MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Sketch the graph of the function. Give the coordinates of the vertex.

1)
$$f(x) = (x-2)^2 + 3$$

A) vertex (3, 2)

C) vertex (-3, -2)

B) vertex (-2,3)

D) vertex (2, 3)

2)
$$f(x) = \frac{1}{5}(x+4)^2 - 5$$

A) vertex (4, -5)

C) vertex (-4, -5)

B) vertex (5, 4)

D) vertex (-5, -4)

Solve the problem.

3) The table shows the number of new cases (in thousands) of a certain disease diagnosed in a country in various years.

	Number (in thousands)
Year	of cases diagnosed
1997	49.4
1998	43.2
1999	41.4
2000	39.3
2001	39.6
2002	40.9
2003	40.9
2004	4 5. <i>7</i>

Let n = f(t) be the number of new cases (in thousands) of the disease diagnosed at t years since 1997. Find a quadratic equation for f in vertex form. Use the data for the year 2000 as the vertex and use the data for the year 2004 to find the value of a.

A)
$$f(t) = -0.23(t - 3)^2 + 49.4$$

B)
$$f(t) = 0.4(t - 3)^2 + 39.3$$

C)
$$f(t) = 0.71(t - 4)^2 + 39.3$$

D)
$$f(t) = 6.4(t-3)^2 + 39.3$$

4) Find an equation of the function f sketched below in the form $f(x) = a(x - h)^2 + k$. Use the vertex to find the values of h and k and use a second point on the graph to find the value of a.

B)
$$f(x) = (x-2)^2 - 2$$

D) $f(x) = (x+2)^2 + 2$

D)
$$f(x) = (x + 2)^2 + 2$$

5) Find the x-coordinate of the vertex of a parabola passing through the points (-4, -4) and (8, -4).

Sketch by hand the graph of the function. Give the coordinates for the vertex.

6)
$$y = x^2 + 5x + 4$$

A) vertex: $\left(\frac{5}{2}, -\frac{9}{4}\right)$

C) vertex: $\left(\frac{5}{2}\right)$

Solve the problem.

- 7) April shoots an arrow upward into the air at a speed of 64 feet per second from a platform that is 33 feet high. The height of the arrow is given by the function $h(t) = -16t^2 + 64t + 33$, where t is the time is seconds. What is the maximum height of the arrow?
 - A) 64 ft
- B) 33 ft
- C) 29 ft
- D) 97 ft

- 8) You have 244 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area.
- 8) _____

- A) 63 ft by 59 ft
- B) 122 ft by 122 ft
- C) 122 ft by 30.5 ft
- D) 61 ft by 61 ft

Simplify.

- 9) $\sqrt{28}$ A) $2\sqrt{7}$
- B) $\sqrt{28}$
- C) 4√7
- D) 14
- 9) _____

- 10) $\sqrt{300}$ A) $\sqrt{300}$
- B) $3\sqrt{10}$
- C) 10√3
- D) $100\sqrt{3}$
- 10) _____

11)

- 11) $\frac{19}{\sqrt{68}}$
 - A) $\frac{19\sqrt{17}}{17}$
- B) $\frac{19}{34}$

- C) $\frac{19\sqrt{17}}{2}$
- D) $\frac{19\sqrt{17}}{34}$

Solve.

- 12) $(x + 3)^2 = 24$ A) $2\sqrt{6} \pm 3$
- B) $-3 \pm 2\sqrt{6}$
- C) $-3 + 2\sqrt{6}$
- D) $-3 \pm 2\sqrt{12}$
- 12) _____

- 13) $\left(x \frac{1}{2}\right)^2 = \frac{121}{4}$
- B) 6, -5
- C) 12, -10
- D) 10, -12

13) _____

14) _____

Find all x-intercepts.

- 14) $f(x) = -x^2 + 7x 12$
 - A) (3, 0) and (-4, 0) C) (3, 0) and (4, 0)

- B) (-3, 0) and (-4, 0)
- D) no x-intercepts

Simplify.

- 15) $-\sqrt{-98}$
 - A) $-7i\sqrt{2}$
- B) -7√2
- C) 7i√2
- D) ±7i√2
- 15) _____

16) _____

- 16) $\sqrt{-\frac{7}{100}}$
 - A) $\frac{\sqrt{7}}{10}$
- B) $-\frac{\sqrt{7}}{10}$
- C) $\frac{i\sqrt{7}}{100}$
- D) $\frac{i\sqrt{7}}{10}$

Solve the equation by completing the square.

- 17) $x^2 + 14x = -30$
 - A) $7 \pm \sqrt{30}$
- B) $-14 + \sqrt{30}$
- C) $7 + \sqrt{19}$
- D) $-7 \pm \sqrt{19}$
- 17)

18) _____

- 18) $x^2 + 5x + 5 = 0$
 - A) $\frac{-5 \pm \sqrt{5}}{2}$
- B) $\frac{-5 \pm 3\sqrt{5}}{2}$
- C) $\frac{5 \pm \sqrt{5}}{2}$
- D) $\frac{-5 \pm \sqrt{5}}{10}$

19)
$$6x^2 + 10x + 3 = 0$$

A)
$$\frac{-5 \pm \sqrt{7}}{12}$$

B)
$$\frac{-5 \pm \sqrt{7}}{6}$$

C)
$$\frac{-5 \pm \sqrt{43}}{6}$$

D)
$$\frac{-10 \pm \sqrt{7}}{6}$$

Find all complex-number solutions by completing the square.

20)
$$4x^2 - 3x + 1 = 0$$

A) $\frac{3 \pm \sqrt{7}}{8}$

C)
$$\frac{3 \pm i\sqrt{7}}{8}$$

B) $\frac{-3 \pm i\sqrt{7}}{8}$

D)
$$\frac{3 - i\sqrt{7}}{8}$$
, $\frac{-3 + i\sqrt{7}}{8}$

Use the quadratic formula to solve the given equation.

21)
$$3x^2 + 9x + 3 = 0$$

A)
$$\frac{-3 \pm \sqrt{5}}{2}$$

B)
$$\frac{-3 \pm \sqrt{5}}{6}$$

C)
$$\frac{-3 \pm \sqrt{13}}{2}$$

D)
$$\frac{-9 \pm \sqrt{5}}{2}$$

22)
$$(x-9)(x-1)=22$$

A)
$$5 \pm \sqrt{38}$$

B)
$$-5 \pm 2\sqrt{3}$$

C)
$$-5 \pm \sqrt{38}$$

D)
$$5 \pm 2\sqrt{3}$$

22) _____

21)

19) ____

20)

Find all complex-number solutions by using the quadratic formula.

23)
$$x^2 = -4x - 14$$

A)
$$-2 \pm i\sqrt{10}$$

C)
$$2 \pm i \sqrt{10}$$

D)
$$-2 \pm \sqrt{10}$$

23) _____

Solve the problem.

Year	Housing Starts
1992	200
1993	205
1994	210
1995	240
1996	245
1997	230
1998	220
1999	210

A)
$$f(t) = -2.679t^2 + 26.607t + 168.571$$

C)
$$f(t) = -2.679t^2 - 26.607t + 168.571$$

B)
$$f(t) = -2.679t^2 + 26.607t - 168.571$$

D)
$$f(t) = 2.679t^2 + 26.607t + 168.571$$

	Sales	
Year	(in billions of dollars)	
1992	0.78	
1994	0.38	
1996	0.18	
1998	0.44	
1999	1.20	

Let f(t) represent the sales (in billions of dollars) at t years since 1990. A reasonable model is

- $f(t) = 0.065t^2 0.68t + 1.95$. Use the model to predict sales in 2006.
 - A) \$5.85 billion
- B) \$7.71 billion
- C) \$7.16 billion
- D) \$6.41 billion

26) The sales for a gaming console for various years are listed in the table below.

0.0		
26)		

	Sales		
Year	(in billions of dollars)		
1992	0.78		
1994	0.38		
1996	0.18		
1998	0.44		
1999	1.20		

Let f(t) represent the sales (in billions of dollars) at t years since 1990. A reasonable model is $f(t) = 0.065t^2 - 0.68t + 1.95$. According to the model, when were sales at a minimum? What were the sales in that year?

A) 1995; \$166 million

B) 1997; \$170 million

C) 1995; \$172 million

D) 1996; \$180 million

Answer Key Testname: CHAPTER 9 TEST 1

- 1) D 2) C 3) B 4) D
- 5) C
- 6) B
- 7) D 8) D

- 9) A 10) C 11) D 12) B 13) B

- 14) C

- 15) A 16) D 17) D 18) A

- 19) B 20) C
- 21) A 22) A 23) A
- 24) A
- 25) B
- 26) C